Torsion Theories for Algebras of Affiliated Operators of Finite Von Neumann Algebras
نویسنده
چکیده
The dimension of any module over an algebra of affiliated operators U of a finite von Neumann algebra A is defined using a trace on A. All zero-dimensional U-modules constitute the torsion class of torsion theory (T,P). We show that every finitely generated U-module splits as the direct sum of torsion and torsion-free part. Moreover, we prove that the theory (T, P) coincides with the theory of bounded and unbounded modules and also with the Lambek and Goldie torsion theories. Lastly, we use the introduced torsion theories to give the necessary and sufficient conditions for U to be semisimple.
منابع مشابه
Torsion Theories for Finite Von Neumann Algebras
The study of modules over a finite von Neumann algebra A can be advanced by the use of torsion theories. In this work, some torsion theories for A are presented, compared and studied. In particular, we prove that the torsion theory (T,P) (in which a module is torsion if it is zero-dimensional) is equal to both Lambek and Goldie torsion theories for A. Using torsion theories, we describe the inj...
متن کاملA double commutant theorem for Murray-von Neumann algebras.
Murray-von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra A of the Murray-von Neumann algebra A(f)(R) associated with a finite von Neumann algebra R is the Murray-von Neumann algebra A(f)(A(0)), wh...
متن کاملVarious topological forms of Von Neumann regularity in Banach algebras
We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...
متن کاملReiter’s Properties for the Actions of Locally Compact Quantum Goups on von Neumann Algebras
متن کامل
Local Derivations on Algebras of Measurable Operators
The paper is devoted to local derivations on the algebra S(M, τ) of τ measurable operators affiliated with a von Neumann algebra M and a faithful normal semi-finite trace τ. We prove that every local derivation on S(M, τ) which is continuous in the measure topology, is in fact a derivation. In the particular case of type I von Neumann algebras they all are inner derivations. It is proved that f...
متن کامل